Rutgers University: Algebra Written Qualifying Exam

 January 2012: Day 2 Problem 1 SolutionExercise. Suppose A is a 5×5 complex matrix and $(A-2 I)^{5}=0$.
(a) What Jordan canonical forms are possible for A ?

Solution.

$\left[\begin{array}{l}{\left[\begin{array}{lllll}2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2\end{array}\right],\left[\begin{array}{lllll}2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2\end{array}\right],\left[\begin{array}{lllll}2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2\end{array}\right],\left[\begin{array}{lllll}2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2\end{array}\right],\left[\begin{array}{lllll}2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2\end{array}\right],} \\ {\left[\begin{array}{lllll}2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2\end{array}\right],\left[\begin{array}{lllll}2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2\end{array}\right],}\end{array}\right.$
(Part b is on the next page)
(b) Suppose that there exists another 5×5 complex matrix B such that $A B=B A$ and the minimal polynomial of B is $t^{3}+t$. Now which of your answers to (a) are still possible Jordan canonical forms for A ? Explain your reasoning.

Solution.

$q_{B}(t)=t(t-i)(t+i)$
and B is diagonalizable since $q_{B}(B)=0$ and q_{B} has simple roots
Theorem: If $A B=B A$ then for any $\lambda \in \mathbb{C}, k \in \mathbb{Z}_{\geq 0}$, A sends $\operatorname{ker}\left((B-\lambda I)^{k}\right)$ to itself.

$$
\begin{aligned}
& \left.\begin{array}{c}
p_{B}(t)=t^{3}(t-i)(t+i), t(t-i)^{3}(t+i), t(t-i)(t+i)^{3} \\
t^{2}(t-i)^{2}(t+i), t^{2}(t-i)(t+i)^{2}, t(t-i)^{2}(t+i)^{2}
\end{array}\right\} \begin{array}{l}
\text { Think of as: } \\
\left(x-r_{1}\right)^{3}\left(x-r_{2}\right)\left(x-r_{3}\right) \\
\left(x-r_{1}\right)^{2}\left(x-r_{2}\right)^{2}\left(x-r_{3}\right)
\end{array} \\
& \text { Let } \quad W_{1}=\operatorname{ker}\left(B-r_{1} I\right) \quad W_{2}=\operatorname{ker}\left(B-r_{2} I\right) \quad W_{3}=\operatorname{ker}\left(B-r_{3} I\right), \\
& \text { Then } \quad V=\underbrace{W_{1}}_{\operatorname{dim} 2} \oplus \underbrace{W_{2}}_{\operatorname{dim} 2} \oplus \underbrace{W_{3}}_{\operatorname{dim} 1}
\end{aligned}
$$

Let $A_{i}=\left.A\right|_{w_{i}}$ for $i=1,2,3$
Since $A_{1}=W_{1} \rightarrow W_{1}$ is a 2×2 matrix. it has JCF $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$ or $\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$
Similarly, $A_{2} \sim\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$ or $\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$
$A_{3} \sim[2]$
The Jordan Canonical form of A is blocks $\left[\begin{array}{lll}J_{1} & & 0 \\ & J_{2} & \\ 0 & & J_{3}\end{array}\right]$
$\left[\begin{array}{lllll}2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2\end{array}\right],\left[\begin{array}{lllll}2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2\end{array}\right],\left[\begin{array}{lllll}2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2\end{array}\right]$

