Rutgers University: Algebra Written Qualifying Exam January 2012: Day 2 Problem 1 Solution

Exercise. Suppose A is a 5×5 complex matrix and $(A - 2I)^5 = 0$.

(a) What Jordan canonical forms are possible for A?

Solution.			
$\begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix},$	$\begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix},$	$\begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix},$	$\begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix},$
$\begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix},$			

(Part b is on the next page)

(b) Suppose that there exists another 5×5 complex matrix B such that AB = BA and the minimal polynomial of B is $t^3 + t$. Now which of your answers to (a) are still possible Jordan canonical forms for A? Explain your reasoning.

Solution.

 $q_B(t) = t(t-i)(t+i)$ and B is diagonalizable since $q_B(B) = 0$ and q_B has simple roots **<u>Theorem</u>**: If AB = BA then for any $\lambda \in \mathbb{C}, k \in \mathbb{Z}_{>0}$, A sends $\ker((B - \lambda I)^k)$ to itself. $p_B(t) = t^3(t-i)(t+i), t(t-i)^3(t+i), t(t-i)(t+i)^3$ $t^2(t-i)^2(t+i), t^2(t-i)(t+i)^2, t(t-i)^2(t+i)^2$ Think of as: $(x-r_1)^3(x-r_2)(x-r_3)$ $(x-r_1)^2(x-r_2)^2(x-r_3)$ Let $W_1 = \ker(B - r_1 I)$ $W_2 = \ker(B - r_2 I)$ $W_3 = \ker(B - r_3 I),$ Then $V = \underbrace{W_1}_{\dim 2} \oplus \underbrace{W_2}_{\dim 2} \oplus \underbrace{W_3}_{\dim 1}$ Let $A_i = A|_{w_i}$ for i = 1, 2, 3Since $A_1 = W_1 \to W_1$ is a 2 × 2 matrix. it has JCF $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ or $\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ Similarly, $A_2 \sim \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ or $\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ $A_3 \sim |2|$ The Jordan Canonical form of A is blocks $\begin{bmatrix} J_1 & 0 \\ 0 & J_2 \end{bmatrix}$ $\begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$